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Abstract

This paper deals with a refined similarity solution for the solidification of ternary or higher-order multicomponent
alloys. The present approach not only retains the existing features of binary systems such as temperature—solute
coupling, shrinkage-induced flow, solid-liquid property differences and finite back diffusion, but also is capable of
handling a multicomponent alloy without restrictions on the partition coefficient and microsegregation parameter. A
new exact solution to the energy equation including the convection term in the pure liquid region is successfully derived,
which allows the present analysis to cover a high initial superheating. For an alloy of K-solute species, governing
equations in the mushy region reduce to (K + 2) simultaneous ordinary differential equations via similarity transform,
which are to be solved along with the closed-form temperature profiles in the solid and liquid regions. A linearized
correction scheme adopted in the solution procedure facilitates to determine the solidus and liquidus position stably.
Good agreements are found in comparison with the numerical predictions and available simplified similarity solutions

for binary and ternary alloys. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Analysis of alloy solidification processes has at-
tracted considerable research attentions in heat and
mass transfer area. Some of the recently developed nu-
merical methods have shown a certain degree of success
in qualitatively predicting the macroscopic features of
alloy solidification [1,2]. Modeling efforts for incorpo-
rating the microscopic characteristics and/or interac-
tions on different length scales into the numerical
analysis have also been made [3,4]. From the viewpoint
of alloy’s composition, most of these studies have dealt
with binary systems due mainly to a simple and well-
defined nature of phase equilibrium relation. More
recently, a number of notable attempts to predict the
solidification behavior of multicomponent alloys have
been reported [5-7]. They seem to be motivated by the
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fact that commercially used alloys are mostly composed
of more than two constituents.

In developing a sophisticated numerical model for
alloy solidification, one of the major problems is lack of
appropriate benchmarks for quantitative assessment of
the predicted results. Only a few sets of experimental
data can be applied for model validation because un-
certainties are associated with measurements, material
properties and imposed conditions. In addition, the
published analytical or semi-analytical solutions suffer
from shortcomings associated with excessive simplifica-
tions in their derivation procedure or deviation from the
actual phenomena, thereby being unable to capture the
fundamental features of interest in the actual systems.
The present study is intended to provide a more general
test solution for the multicomponent alloy solidification.

A variety of analytical approaches to the alloy
solidification problem in a one-dimensional domain
have been proposed [8-10]. The latest two works of
Voller [11] and Chung et al. [12] are worth to address
among them, in that each of them tried to improve the
previous studies in its own way. Voller [11] included
the solute and temperature coupling, eutectic reaction,
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Nomenclature

specific heat

solute concentration
solid volume fraction
thermal conductivity
number of solute species
latent heat of fusion
coefficient

coefficient

time

temperature

initial superheating, 7y — Ty
coordinate
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Greek symbols

thermal diffusivity

position of the phase interface

similarity variable

equilibrium partition coefficient
transformed interface position, 5/ (4xt)"

NI R

P density
W correction factor
Superscripts

phase-averaged quantity
ratio of the solid-to-liquid property

k solute species

n new value
Subscripts

0 initial condition
e eutectic

i microscopic solid-liquid interface
1 liquid

L liquidus

m mush

0 old value

] solid

S solidus

W wall

microsegregation, shrinkage-induced flow, and macro-
segregation in his model. This seems to be one of the
most comprehensive test solutions for binary systems
available in the literature, but still involves some limi-
tations to be relaxed. First, the solution can actually be
applicable to a binary system only, although it has been
extended to handle a multicomponent alloy through his
two companion papers [11,13]. It was assumed in the
extension that both the microsegregation parameter and
the partition coefficient are the same for all the solute
species. However, this assumption leads the multicom-
ponent system to an equivalent binary system because
the transport of each solute is not independent. Second,
convection in the bulk liquid was neglected, so that the
solution can hardly cover the case of a high initial
superheating. Third, all properties except the density
were presumed to be constant for the sake of conve-
nience of formulation. Noting that the effect of property
variation has been a major concern in the previous
studies [9,10], it needs to be retained for the complete-
ness of analysis. Finally, the numerical algorithm for
tracking the solidus and liquidus position, which plays
the key role in analytical approaches, seems to be
somewhat complicated to use.

Chung et al. [12] have presented a similarity solution
for conduction-dominated binary alloy solidification.
The effects of concentration-dependent solid fraction
and variable properties in the mushy region were in-
vestigated for two representative binary systems. One of
their major contributions is to develop a linearized
correction scheme for tracking the phase interface
positions. It appears to be efficient and ease to imple-

ment. Nevertheless, the study has drawback of dealing
with binary alloys and excluding the shrinkage-induced
flow.

The present study is aimed at refining the existing
analytical approaches so as to handle a multicomponent
system. It encompasses all the binary solidification fea-
tures, but is free from the above-noted drawbacks. The
analysis relies basically on the same similarity transfor-
mation as the previous studies. An exact solution to the
full energy equation including the convection term in the
bulk liquid is sought. Dependence of the mushy prop-
erties on the solid fraction is rigorously accounted for.
The linearized correction scheme for locating the inter-
faces is extended to the present model. Finally, we
compared the present results with available numerical
and simplified analytical solutions of binary and ternary
alloys.

2. Analysis
2.1. Modeling

The physical system considered in this work is a
one-dimensional directional solidification, as depicted
schematically in Fig. 1. At 1 =0, the alloy, which was
initially at a uniform concentration C¥ for each solute k
and at a superheated temperature Tj, begins to solidify
in a semi-infinite domain from the isothermally cooled
wall. The wall temperature Ty is lower than the eutectic
temperature of the alloy, so that eutectic reaction takes
place. As the solidification proceeds, three distinct
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Fig. 1. Schematic of present multicomponent alloy solidification model.

regions, i.e., solid, mush, and liquid, bounded by the
solidus and liquidus appear in the system. This model is
basically identical with Voller’s [11].

In order to render the problem analytically tractable,

the following assumptions have been introduced:

1.

The solid is fixed to the wall and is not deformed, i.e.,
the morphology of the mushy region is columnar
dendritic or consolidated equiaxed.

Within a control volume of the mushy region, the
temperature and interdendritic liquid concentration
are uniform.

Thermodynamic equilibrium holds at the micro-
scopic solid-liquid interface, i.e., C& = k*C¥, where
k¥ is the equilibrium partition coefficient for each
solute k.

In a dilute system, assuming straight liquidus lines,
the relation between the temperature and liquid con-
centrations of the solutes along the liquidus surface
can be expressed as [5,13]

K
T=T+Y mCf, (1)
k=1

where m* is the liquidus slope of solute k and T; is the
fusion temperature of the pure solvent. This corre-
sponds to the primary solidification path with iso-
thermal eutectic troughs in Krane et al. [6].

The macroscopic solute diffusion is negligible. This
implies that the solute transports both in the solid
and pure liquid regions are absent.

Back diffusion in the dendritic solid is specified by
Clyne and Kurz microsegregation model [14].

Flow is induced only by the solid-liquid density dif-
ference.

. All properties are constant within individual phases,

but may differ between the solid and liquid phases.
Hence properties in the mushy region, where two

phases coexist, are weighted by the solid fraction
[9,10] as

¢m:f¢s+(1 7f)¢1' (2)

9. Inter-diffusion of each solute is neglected [6]. Then

the species transport equation for each solute has

the same form (see Eq. (6)).
The assumptions described above are the same as Vol-
ler’s [11] except the assumptions (8) and (9). However,
Voller’s additional assumptions, i.e., a low superheating
to neglect the convection effect in the liquid region and
same microsegregation parameter and partition coef-
ficient for each solute to deal with ternary alloys, have
been relaxed.

Based on the foregoing assumptions, the governing
equations are derived as follows [11,12]:

In the solid region (0 < x < Js),

or T
E: asﬁ. (3)

In the mushy region (ds < x < d1),

6u_ _»%
Pl Gl Ok (4)
or @ 3
e+ (- n)G +ug+ [ore-n-L5)
o, 0T
=z {fk—i—(l—j)}%}, (5)
ock  oCk d
[(1—f)+ﬂkfﬁrc"]%+u%:(1—Kk)clkﬁa—{, (6)

where the hat symbol denotes the ratio of solid-to-liquid
property.
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In the liquid region (Jp < x < 00),

al+ al_ azl (7)
o T Y

where the flow velocity in this region is defined as
u = u(dy).

The initial condition is evident, and the boundary
conditions are listed as follows:

T =Ty, at x=0, (8)
. do
u= (1 _fS)(l_p)d_ts7 at  x=7Js, )
T= Ts, at Xzés, (10)
or or dds
km(§)m*ks(§)s—*ﬂs§(l*fs)[(clfcs)TerL]?
at X:(Ss, (11)
T=T, at  x =04, (12)
oT oT
km(a)m—lﬂ(a)l —0, at X—éL, (13)
Cf =, at  x=4p, (14)
=T, as x — oo, (15)

where fs is the solid fraction at the end of dendritic
solidification, thereby (1 — fs) being the eutectic fraction.

The term f* appearing in Eq. (6) represents the de-
gree of back diffusion in the dendritic solid [14], by
which the interaction between microsegregation and
macrosegregation is incorporated. Settings of f* = 0 and
B* =1 respectively correspond to two limiting cases of
solid state diffusion, i.e., the Scheil equation and the
lever rule. Values in 0 < ¢ < 1 indicate finite back dif-
fusion but have no physical meaning in Clyne and Kurz
microsegregation model [14]. The solid fraction is con-
tinuous at the liquidus, whereas it jumps from fs to 1 at
the solidus on occurrence of eutectic reaction. As evident
in Eq. (9), the velocity in the mushy region, u, traces the
same trend.

Since the species transport equation is formulated
separately for each solute, the present model can deal
with a multicomponent alloy without restrictions on the
partition coefficient and microsegregation parameter. It
should be remarked here that the effects of both the
partition coefficient and the liquid slope for individual
solute species have shown to be significant in a numer-
ical prediction [5]. The model equations also retain the
convection term in the liquid energy conservation and
property variation in the mushy region. These aspects
differentiate the present study from the previous ones.

2.2. Similarity transformation

Analytical approaches are directed basically at re-
ducing the governing partial differential equations to a
set of algebraic and/or ordinary differential equations
via variable transformations or approximations. Two
commonly adopted methods, i.e. the heat balance inte-
gral and similarity transformation, have well been re-
viewed by Voller [11]. The present study prefers the
similarity solution.

The well-known similarity variable

n = x/(4ut)"?, (16)

is introduced to reduce the model equations. In the solid
region, the temperature profile is already available

[11,12] as
T—Ty erf(n/a'/?)

= fi A 1
Ts— Ty orf(s/i7) or 0<ny<lis, (17)

where the transformed interface position is defined as
2 = 6/(4oqt)'"?. In the liquid region, on the other hand,
we are to derive an exact similarity solution. Since the
velocity u; is uniform throughout the liquid region,
Eq. (7) is transformed into

d’r dr

—+2n—-U)—=0 18
G 2= U =0 (18)
where U = ul/(oq/t)l/z. Solving Eq. (18) subject to
Egs. (12) and (15) results in

T—-T, erfc(n—U)
TL — TO B erfc(/lL — ZJ])

for JL<n<oo. (19)

Note here that the solidus and liquidus positions, s and
/L, and the velocity, Uj, are not known in Egs. (17) and
(19).

In the mushy region, the similarity transformation
yields a set of ordinary differential equations, i.e.,
du ds
—+(l=py—=0, 20
dn+( P)’?dn ) (20)

o [+ |

. dT
:*2{fpc+(1*f)}’1dfn
dr o L. df
+2Ud_n_2{pT(c_1)_c_1p}nd_ﬂ’ (21)
kAkdf dclki S i~ ok dClk
(I_K)pclnd_q+Ud_q_{(l_'f)+ﬁ/)‘fK}nd—n'

(22)
The boundary condition, Eq. (9), is also rewritten as

U= (1 *fs)(l — ﬁ);»& at n= ﬂus. (23)
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For the closure of the analysis, the heat flux conditions
at the solidus and liquidus, Egs. (11) and (13), should be
expressed in terms of the transformed variables. Taking
advantage of Eqgs. (17) and (19), the interfacial heat
fluxes are rearranged as

(&), -l
dn /e fsk+ (1= f5) | (n8)'"?

cox(— /) BT
_2)vsﬁ(1_fs){(l—é)T+C£l} : (24)

dr 2 T, —Tp ,
dn ) T A2 et — U0 (- U 25
(di’] >;VL ml/2 erfC()\,L — (Jl) EXp{ ( L 1) }7 ( )

where /¢ and 2; denote the solidus and liquidus pos-
itions approaching from the mushy side, respectively.

2.3. Solution procedure

The transformed equations in the mushy region, Egs.
(20)—(22) along with the supplemental relation, Eq. (1),
are to be solved to obtain f(n), T(n), U(n) and Cf(y).
Also Js and J; should be determined as satisfying in-
terfacial heat flux conditions, Eqgs. (24) and (25). The
inherent complexities stemming from the nonlinearities
pose formidable barriers to straightforward analytical
treatments in mushy region, so a numerical method is
invoked. However, it should be noted that such a nu-
merical approach is distinct from a direct numerical
simulation of the system described by the original partial
differential equations.

In order to compare the present results with Voller’s
[11,13] on the same condition used in his analysis, the
mushy region is discretized into 4000 segments. At each
iteration, velocity distribution is updated by integrating
Eq. (20) from n =45 to A. using Eq. (23). Eq. (21)
subject to Eqgs. (10) and (12) is solved to obtain the
temperature distribution. One of the species equations,
e.g., k = 1in Eq. (22), is assigned for renewing the solid
fraction, while the others and Eq. (1) are used to de-
termine the concentration fields of each solute. It is more
convenient to integrate the species equation backward
from n = /1 because of the well-defined boundary con-
ditions, Eq. (14). Note that the relation between the
temperature and liquid concentration does not need to
be linear in the present analysis.

In order to determine the interface positions, a lin-
earized correction scheme that proved to be efficient for
a binary alloy [12], is adopted. The solidus and liquidus
positions are corrected, respectively, as

2y = 2s(1 + ws), (26)

A= (1+ o), (27)

where 4, = 2, — U, and the superscript n denotes the
new value during an iteration procedure. Substituting
Egs. (26) and (27) into Egs. (24) and (25), respectively,
expanding the results via the Taylor series, and trun-
cating the higher-order terms, we have the following
equations for the correction factors:

U)s[P1P4 + 2P2/LS/GC + 2P3/LS Crf(/us/Al/z) + 2P1P3/15}
7P4 erf( S/Al/z) Jer 2P3j.serf(/bs/”/2) (28)

2

or exp(—if) [4R)JL2 —t

= 2R exp(/) — {1 — (d—}) (29)

where the coefficients P; (j = 1,...,4) and R are defined

as
Pi— % exp(~12/4), (30)
P = ”‘((T—)‘/TW) exp(~1 /4), G1)
i -p0-an+ L], (32)

~ k-2 ) 33)
R=(T) - Tp)/="2. (34)

Since the performance of the interface tracking essen-
tially affects the overall utility of the similarity solution,
the development of an efficient routine is no less im-
portant than the modeling of physical phenomena. The
present algorithm given below has shown stable and
efficient convergence.

The final solution procedure is summarized as fol-
lows:

1. Guess the values of As and /.

2. Assume the profiles of T(n), (1), U(y), and Cf() in
s <N <AL

3. Solve Egs. (20)—(22) along with Eq. (1), as described
above. This sequential-iterative procedure continues
until convergence.

4. On convergence at step (3), check whether the calcu-
lated temperature profile satisfies Eqs. (24) and (25)
within a prescribed tolerance.

5. If not, calculate the correction factors from Eqgs. (28)
and (29), and update the interface positions using
Egs. (26) and (27). Repeat steps (3)—(5).
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6. On satisfaction at step (4), terminate the procedure
and calculate the quantities of interest.

In the actual calculations, it is recommended to under-

relaxate o values during correction stage, i.e., in ap-

plying to Egs. (26) and (27), for ensuring stable

convergence.

3. Results and discussion
3.1. Model validation

First of all, the present study is validated by com-
paring the results with available analytical and/or nu-
merical solutions [11,13]. All the properties and
conditions used here are identical with those of
Swaminathan and Voller [13], and listed in Table 1.
Note that a much larger than the observed difference
between the solid and liquid densities is imposed to in-
duce a strong interdendritic fluid flow. The starred val-
ues of ¢ and k in parenthesis, which were cited from
Chung et al. [12], are used only to examine the effect of
property variation. Two sets of values in «, m, and C
correspond to binary and ternary alloys, respectively.

Fig. 2 illustrates the mixture concentration profiles at
the two extremes of back diffusion for a binary alloy.
Independently of the degree of back diffusion, two sets
of data agree excellently with each other. For a ternary
alloy, Fig. 3 shows the mixture concentration profiles of
solute A and B based on (i) zero back diffusion for both
solutes, and (ii) complete back diffusion for solute A
(lever rule) and zero back diffusion for solute B (Scheil
equation). Complete agreement is found with the avail-
able numerical solution [13] for the case (i), but the de-
viation in the case (ii), especially in the profile of solute
A is discernible. However, in view of favorable agree-
ment for solute B and assumption (9) aforementioned, it
can be deduced that the solid fraction profile is correctly
obtained for the case (ii). Then the mixture concentra-

X —
o s e  Voller
=" 0.052 = Present
.2
=
=
= 0.0501
8 Lever rule
=
o |
©  0.048|- =
o I
B |
1 |
S 0.0461 Scheil eq.
o044l vt v

0.2 0.3 0.4 0.5 0.6 0.7
Similarity variable, n

Fig. 2. Comparison of the average concentration profile be-
tween the present and previous solutions under the same con-
ditions of constant properties and a small superheating.

tion of solute A at the solidus interface can be evaluated
using Eqs. (1) and (35), which implies that the numerical
results [13] seem to under-predict the macrosegregation
in the mushy region. Note that the above discussion is
valid as far as the solid fraction coincide between the
two studies. These comparisons give credence to the
ascertainment that the present study has been carried
out on proper modeling, formulation and solution pro-
cedure.

Verification of the present model is also achieved by
increasing the liquidus slope of one species, say A, and
examining the asymptotic behavior towards a binary
system. Fig. 4 shows the mixture concentrations of sol-
ute A and B for ¥ = 0, according to the change of the
liquidus slope of solute A, m*. In this examination, the
value of mACy has been kept constant to maintain in-
variant solidus and liquidus temperatures (see Eq. (1)).
This implies that the mixture concentration of solute B is
not disturbed and the present ternary model reduces to a

Table 1
Numerical data for sample binary and ternary alloys [11]
Property Value Unit
Solid Liquid
¢ 1000 1000 (960%) Jkg™' K™
k 100 100 (55.6%) Wm! K
p 3120 2400 kg m™
L 4%10° T kg™!
T. 821.2 K
Tr 921.2 K
K, K4 /KB 0.3, 0.3/0.15 —
m, mA /m® —-340, —340/-720 K
Tw 621.2 K
AT 1.0 K

Co, Co/CE 0.05, 0.025/0.0118
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Fig. 3. Comparison of the average concentration profile with
the available numerical solution for (i) zero back diffusion for
solute A and B and (ii) the complete back diffusion for solute A
and zero back diffusion for solute B.

binary system by properly adjusting the phase equilib-
rium parameters. As m*/mf increases (i.e., C) de-
creases), the mixture concentration of solute A becomes
flatter and approaches zero, and finally goes to a binary
system of solute B only.

The mixture concentration C* shown in Figs. 2 and 3,
which is the representative parameter to delineate
macrosegregation pattern, is defined by the solute con-
servation for a control volume as

a L =N)CE +p s C
p(L=f)+pf

The term C' in Eq. (35) denotes the intrinsic volume
averaged concentration of solute 7 in the dendritic solid,

(35)

0.030 ]

F m*/m" =1 .
[ 0.025:——\—/——:
=8 [ ]
o - ]
s 0.020¢ Solute A
E - Solute B ]
3 0.015F - .
= ]
8 F e ]
o 0010 T =
= - .
£ E s ]
= o0Sp V7 0 —— i ———
=

=10 ]
=30 ]
0.000 U T T T N S T T T T T T W SO T N T

0.2 0.3 0.4 0.5 0.6 0.7

Similarity variable, n

Fig. 4. The asymptotic mixture concentration behavior toward
a binary system according to the change of the liquidus slope of
solute A.

and can be calculated by solving the following differen-
tial equation using Clyne and Kurz model [11]
d(r <) df

dct
k ok ko k S
p =Kk G ”+ﬁf;c 0 (36)

3.2. Features of the present solution

The distinctions between the present and recent
works by Voller [11] and Chung et al. [12] are addressed
here to highlight the features of present solution. The
present solution has common aspects with earlier works
[11,12] in that both of them include the shrinkage-in-
duced flow and finite back diffusion, and rely on the
same similarity transformation. The present work also
follows same features as Chung et al. [12], which include
property variation and effective linearized correction
scheme for interface position. However, the following
features may predominate over the earlier works.

The feasible range of the similarity solution is ex-
tended to a ternary or higher-order multicomponent
alloy. On the assumption of neglecting inter-diffusion of
each solute [6], the transport equations for each solute k&
have the same form and are independently expressed as
Eq. (6). Thus for an alloy of K-solute species, governing
equations in the mushy region reduce to (K + 2) non-
linear ordinary differential equations via similarity
transform, which are to be solved along with the exact
solutions for the solid and liquid regions.

Another extension in the present model is to relax the
assumption on the partition coefficient defined as
kb = C*/CF and microsegregation parameter i which
are indices of rates of mass diffusion of the elements in
the solid phase. Schneider and Beckermann [5] found the
direction of flow in the mushy zone was reversed when
using the two different data sets which were the same
except only for partition coefficients of each solute. They
pointed out that partition coefficient has extremely
sensitive to the result. This discloses that the assumption
invoked by Voller [11] has critical limitations in a
practical sense.

Finally, the present solution is also extended to a
high degree of the initial superheating by obtaining the
exact solution, Eq. (19), in the liquid region. As men-
tioned earlier, Voller neglected the convection term, and
restricted the validity of his solution within a low
superheating. He claimed that the convection effect was
negligible up to moderate superheating (25 K). How-
ever, this deduction should be accepted carefully because
the effect may depend strongly on the alloy properties
and imposed conditions. The velocity jump across the
liquidus caused by this approximation also deviates
from the physical reality.

On the whole, the present similarity solution includes
the earlier works by Voller [11] and Chung et al. [12] as a
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subset, since the present work extends its feasible range
over the earlier works without introducing additional
assumptions.

3.3. Effects of parameters

The effect of convection in the liquid region on the
liquidus position is shown in Fig. 5, for which =1
and numerical data in Table 1 have been used. Even
though the liquidus position is the most sensitive
physical quantity to the change of superheating, two
sets of results with and without convection deviate little
from each other. This can be attributed to a low con-
vection-to-conduction ratio for the Al-Cu alloy. The
convection effect would be more dominant for an alloy
with a small thermal conductivity and large density
difference. Nevertheless, the results in Fig. 5 clearly
indicate two facts that the progress of the liquidus front
is retarded by the inward convection (p; > p;), and that
the discrepancy increases with enhancing the super-
heating. Apart from the magnitude of the convection
effect, there is no reason to use the approximate solu-
tion instead of the exact solution at the same level of
compactness.

Fig. 6 demonstrates the effect of variable properties
in the mushy region on the solidification behaviors when
p = 1 for the same alloy. The ratios of properties used in
the calculation are k = 1.8 and ¢ = 1.04 [15], which
correspond to the values in parentheses of Table 1. The
property differences appear to significantly affect all of
the macrosegregation, temperature and solid fraction
profiles, while keeping similar trends. These types of
quantitative effect favorably support the utility of the
present study.

The effects of segregation parameter and partition
coefficient are scrutinized for sample ternary alloy

0.052 = ————
‘ [ with convection
Q{ [ 1 | e e without convection |
£ 0050 |
=
= I
=}
3 5
= 0.048 |-
o |
o
g I ]
£ 0046 | AT=1,20,40 |
= I ]
0.044ll\!1Alli|1l\l|llll|\\\l7

0.2 0.3 04 0.5 0.6 0.7
Similarity variable, 1

Fig. 5. The effect of convection in the melt on the liquidus
position as a function of initial superheating.

(Table 1) and shown in Figs. 7-10, respectively. It
should be noted that the present solution can handle a
higher-order alloy, but for the purpose of scrutinizing
the effect of parameters, we restrict the discussion to a
ternary alloy.

As a base condition, we chose 0.15 for the partition
coefficients of solute A and B and zero for the segrega-
tion parameters of solute A and B. To examine the effect
of each parameter, the value of the momentary interest
parameter is varied while fixing the rest. Fig. 7 shows the
effect of the change in microsegregation parameter of
solute A on the average concentration profile of each
solute. It is discernible that macrosegregation is reduced
as the increase of microsegregation parameter, which is
in line with the results of binary alloy [12]. The influence
is most remarkable near the solidus in the mushy region
where the solid fraction is high enough for C¥ to control
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Fig. 6. The effect of variable properties for the lever rule on the
average concentration.
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Fig. 7. The effect of the change in microsegregation parameter
of solute A on the average concentration profile of each solute.
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Fig. 8. The effect of the change in microsegregation parameter
of solute A on the dimensionless temperature and velocity
profiles.
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Fig. 9. The effect of the change in partition coefficient of solute
A on the average concentration profile of each solute.
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Fig. 10. The combined effect of the changes in both microseg-
regation and partition coefficient of solute A on the average
concentration profile of each solute.

C* in Eq. (35). In contrast, the solidus and liquidus
positions remain nearly unchanged despite different
values of . This means that microsegregation pertains
primarily to the solid fraction field, altering the tem-
perature profile only a little as shown in Fig. 8. The
interdendritic flow velocity is related to back diffusion
through the solid fraction, as evident in Eq. (20). The
more the eutectic is formed with decreasing f*, the
stronger the flow at the solidus.

Fig. 9 shows the effect of the change in partition
coefficient of solute A on the average concentration
profile of each solute. Large partition coefficient means
an increase of inter-dendritic solid concentration [16],
which results in the reduction of macrosegregation as
shown in Fig. 9. This trend is more pronounced as the
effects of f* and x* are combined. Fig. 10 demonstrates
the combined effect of these two parameters. The evident
reduction of macrosegregation reveals the prominent
impacts of  and x* and the importance of their effects
in analysis.

4. Conclusions

Motivated by the limitations involved in the previous
analytical approach, the present study has been con-
ducted to establish a more generalized similarity solu-
tion for a multicomponent alloy solidification system.
Application range of the similarity solution has been
extended to a ternary or higher-order multicomponent
alloy without any restriction on the microsegregation
parameter and partition coefficient which are known to
affect macrosegregation significantly. Another extension
in the present analysis is capable of handling a high
degree of initial superheating by deriving an exact
solution in the liquid region with shrinkage-induced
flow. For systematically tracking the solidus and liqui-
dus positions, the linearized correction scheme devel-
oped for a binary alloy has been adopted in the solution
procedure.

The results for representative cases of binary and
ternary alloys agree quite well with the existing data,
which implies the validity of the present study. In view
of the coverage of the model, the present study not only
is useful for predicting uni-directional solidification
processes, but also serves as a salient test solution for
validating sophisticated numerical models.
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